Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The origin of graben and ridges in Rachmaninoff, Raditladi, and Mozart basins, Mercury

Identifieur interne : 000016 ( PascalFrancis/Corpus ); précédent : 000015; suivant : 000017

The origin of graben and ridges in Rachmaninoff, Raditladi, and Mozart basins, Mercury

Auteurs : David M. Blair ; Andrew M. Freed ; Paul K. Byrne ; Christian Klimczak ; Louise M. Prockter ; Carolyn M. Ernst ; Sean C. Solomon ; H. Jay Melosh ; Maria T. Zuber

Source :

RBID : Pascal:13-0353144

Descripteurs français

English descriptors

Abstract

The Rachmaninoff, Raditladi, and Mozart peak-ring impact basins on Mercury display a distinctive pattern of tectonic features consisting of a central zone that is either devoid of tectonic landforms or contains small ridges, a medial annulus of prominent and predominantly circumferentially oriented graben, and a distal zone displaying graben that occur in a mix of orientations and that are less evident toward the peak ring. Here we use finite element models to explore three candidate scenarios for the formation of these tectonic features: (1) thermal contraction of the interior smooth plains, (2) isostatic uplift of the basin floor, and (3) subsidence following volcanic loading. Our results suggest that only thermal contraction can account for the observed pattern of graben, whereas some combination of subsidence and global contraction is the most likely explanation for the central ridges in Rachmaninoff and Mozart. Thermal contraction models, however, predict the formation of graben in the centermost region of each basin, where no graben are observed. We hypothesize that graben in this region were buried by a thin, late-stage flow of plains material, and images of partially filled graben provide evidence of such late-stage plains emplacement. These results suggest that the smooth plains units in these three basins are volcanic in origin. The thermal contraction models also imply a cooling unit ∼1 km thick near the basin center, further supporting the view that plains-forming lavas on Mercury were often of sufficiently high volume and low viscosity to pool to substantial thicknesses within basins and craters.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  2    @0 2169-9097
A05       @2 118
A06       @2 1
A08 01  1  ENG  @1 The origin of graben and ridges in Rachmaninoff, Raditladi, and Mozart basins, Mercury
A11 01  1    @1 BLAIR (David M.)
A11 02  1    @1 FREED (Andrew M.)
A11 03  1    @1 BYRNE (Paul K.)
A11 04  1    @1 KLIMCZAK (Christian)
A11 05  1    @1 PROCKTER (Louise M.)
A11 06  1    @1 ERNST (Carolyn M.)
A11 07  1    @1 SOLOMON (Sean C.)
A11 08  1    @1 MELOSH (H. Jay)
A11 09  1    @1 ZUBER (Maria T.)
A14 01      @1 Department of Earth, Atmospheric, and Planetary Sciences, Purdue University @2 West Lafayette, Indiana @3 USA @Z 1 aut. @Z 2 aut. @Z 8 aut.
A14 02      @1 Department of Terrestrial Magnetism, Carnegie Institution of Washington, NW @2 Washington, DC @3 USA @Z 3 aut. @Z 4 aut. @Z 7 aut.
A14 03      @1 The Johns Hopkins University Applied Physics Laboratory @2 Laurel, Maryland @3 USA @Z 5 aut. @Z 6 aut.
A14 04      @1 Lamont-Doherty Earth Observatory, Columbia University @2 Palisades, New York @3 USA @Z 7 aut.
A14 05      @1 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology @2 Cambridge, Massachusetts @3 USA @Z 9 aut.
A20       @1 47-58
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 3144E1 @5 354000140724260050
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 13-0353144
A60       @1 P
A61       @0 A
A64 01  2    @0 Journal of geophysical research. Planets
A66 01      @0 USA
C01 01    ENG  @0 The Rachmaninoff, Raditladi, and Mozart peak-ring impact basins on Mercury display a distinctive pattern of tectonic features consisting of a central zone that is either devoid of tectonic landforms or contains small ridges, a medial annulus of prominent and predominantly circumferentially oriented graben, and a distal zone displaying graben that occur in a mix of orientations and that are less evident toward the peak ring. Here we use finite element models to explore three candidate scenarios for the formation of these tectonic features: (1) thermal contraction of the interior smooth plains, (2) isostatic uplift of the basin floor, and (3) subsidence following volcanic loading. Our results suggest that only thermal contraction can account for the observed pattern of graben, whereas some combination of subsidence and global contraction is the most likely explanation for the central ridges in Rachmaninoff and Mozart. Thermal contraction models, however, predict the formation of graben in the centermost region of each basin, where no graben are observed. We hypothesize that graben in this region were buried by a thin, late-stage flow of plains material, and images of partially filled graben provide evidence of such late-stage plains emplacement. These results suggest that the smooth plains units in these three basins are volcanic in origin. The thermal contraction models also imply a cooling unit ∼1 km thick near the basin center, further supporting the view that plains-forming lavas on Mercury were often of sufficiently high volume and low viscosity to pool to substantial thicknesses within basins and craters.
C02 01  2    @0 001E01
C02 02  2    @0 220
C03 01  2  FRE  @0 Graben @5 01
C03 01  2  ENG  @0 grabens @5 01
C03 01  2  SPA  @0 Graben @5 01
C03 02  2  FRE  @0 Mercure @5 02
C03 02  2  ENG  @0 mercury @5 02
C03 02  2  SPA  @0 Mercurio @5 02
C03 03  2  FRE  @0 Tectonique @5 03
C03 03  2  ENG  @0 tectonics @5 03
C03 03  2  SPA  @0 Tectónico @5 03
C03 04  2  FRE  @0 Forme relief @5 04
C03 04  2  ENG  @0 landforms @5 04
C03 05  2  FRE  @0 Orientation @5 05
C03 05  2  ENG  @0 orientation @5 05
C03 05  2  SPA  @0 Orientación @5 05
C03 06  2  FRE  @0 Méthode élément fini @5 06
C03 06  2  ENG  @0 finite element analysis @5 06
C03 07  2  FRE  @0 Modèle @5 07
C03 07  2  ENG  @0 models @5 07
C03 07  2  SPA  @0 Modelo @5 07
C03 08  2  FRE  @0 Contraction @5 08
C03 08  2  ENG  @0 contraction @5 08
C03 08  2  SPA  @0 Contracción @5 08
C03 09  2  FRE  @0 Plaine @5 09
C03 09  2  ENG  @0 plains @5 09
C03 09  2  SPA  @0 Llano @5 09
C03 10  2  FRE  @0 Surrection @5 10
C03 10  2  ENG  @0 uplifts @5 10
C03 11  2  FRE  @0 Bassin subsidence @5 11
C03 11  2  ENG  @0 subsidence basins @5 11
C03 11  2  SPA  @0 Cuenca de subsidencia @5 11
C03 12  2  FRE  @0 Subsidence @5 13
C03 12  2  ENG  @0 subsidence @5 13
C03 12  2  SPA  @0 Subsidencia @5 13
C03 13  2  FRE  @0 Monde @5 14
C03 13  2  ENG  @0 global @5 14
C03 13  2  SPA  @0 Mundo @5 14
C03 14  2  FRE  @0 Ecoulement @5 15
C03 14  2  ENG  @0 flow @5 15
C03 15  2  FRE  @0 Matériau @5 16
C03 15  2  ENG  @0 materials @5 16
C03 16  2  FRE  @0 Mise en place @5 17
C03 16  2  ENG  @0 emplacement @5 17
C03 16  2  SPA  @0 Emplazamiento @5 17
C03 17  2  FRE  @0 Refroidissement @5 18
C03 17  2  ENG  @0 cooling @5 18
C03 17  2  SPA  @0 Enfriamiento @5 18
C03 18  2  FRE  @0 Lave @5 19
C03 18  2  ENG  @0 lava @5 19
C03 18  2  SPA  @0 Lava @5 19
C03 19  2  FRE  @0 Viscosité @5 20
C03 19  2  ENG  @0 viscosity @5 20
C03 19  2  SPA  @0 Viscosidad @5 20
C03 20  2  FRE  @0 Epaisseur @5 21
C03 20  2  ENG  @0 thickness @5 21
C03 20  2  SPA  @0 Espesor @5 21
C03 21  2  FRE  @0 Cratère @5 22
C03 21  2  ENG  @0 craters @5 22
C03 21  2  SPA  @0 Cráter @5 22
N21       @1 336

Format Inist (serveur)

NO : PASCAL 13-0353144 INIST
ET : The origin of graben and ridges in Rachmaninoff, Raditladi, and Mozart basins, Mercury
AU : BLAIR (David M.); FREED (Andrew M.); BYRNE (Paul K.); KLIMCZAK (Christian); PROCKTER (Louise M.); ERNST (Carolyn M.); SOLOMON (Sean C.); MELOSH (H. Jay); ZUBER (Maria T.)
AF : Department of Earth, Atmospheric, and Planetary Sciences, Purdue University/West Lafayette, Indiana/Etats-Unis (1 aut., 2 aut., 8 aut.); Department of Terrestrial Magnetism, Carnegie Institution of Washington, NW/Washington, DC/Etats-Unis (3 aut., 4 aut., 7 aut.); The Johns Hopkins University Applied Physics Laboratory/Laurel, Maryland/Etats-Unis (5 aut., 6 aut.); Lamont-Doherty Earth Observatory, Columbia University/Palisades, New York/Etats-Unis (7 aut.); Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology/Cambridge, Massachusetts/Etats-Unis (9 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research. Planets; ISSN 2169-9097; Etats-Unis; Da. 2013; Vol. 118; No. 1; Pp. 47-58; Bibl. 1 p.1/4
LA : Anglais
EA : The Rachmaninoff, Raditladi, and Mozart peak-ring impact basins on Mercury display a distinctive pattern of tectonic features consisting of a central zone that is either devoid of tectonic landforms or contains small ridges, a medial annulus of prominent and predominantly circumferentially oriented graben, and a distal zone displaying graben that occur in a mix of orientations and that are less evident toward the peak ring. Here we use finite element models to explore three candidate scenarios for the formation of these tectonic features: (1) thermal contraction of the interior smooth plains, (2) isostatic uplift of the basin floor, and (3) subsidence following volcanic loading. Our results suggest that only thermal contraction can account for the observed pattern of graben, whereas some combination of subsidence and global contraction is the most likely explanation for the central ridges in Rachmaninoff and Mozart. Thermal contraction models, however, predict the formation of graben in the centermost region of each basin, where no graben are observed. We hypothesize that graben in this region were buried by a thin, late-stage flow of plains material, and images of partially filled graben provide evidence of such late-stage plains emplacement. These results suggest that the smooth plains units in these three basins are volcanic in origin. The thermal contraction models also imply a cooling unit ∼1 km thick near the basin center, further supporting the view that plains-forming lavas on Mercury were often of sufficiently high volume and low viscosity to pool to substantial thicknesses within basins and craters.
CC : 001E01; 220
FD : Graben; Mercure; Tectonique; Forme relief; Orientation; Méthode élément fini; Modèle; Contraction; Plaine; Surrection; Bassin subsidence; Subsidence; Monde; Ecoulement; Matériau; Mise en place; Refroidissement; Lave; Viscosité; Epaisseur; Cratère
ED : grabens; mercury; tectonics; landforms; orientation; finite element analysis; models; contraction; plains; uplifts; subsidence basins; subsidence; global; flow; materials; emplacement; cooling; lava; viscosity; thickness; craters
SD : Graben; Mercurio; Tectónico; Orientación; Modelo; Contracción; Llano; Cuenca de subsidencia; Subsidencia; Mundo; Emplazamiento; Enfriamiento; Lava; Viscosidad; Espesor; Cráter
LO : INIST-3144E1.354000140724260050
ID : 13-0353144

Links to Exploration step

Pascal:13-0353144

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The origin of graben and ridges in Rachmaninoff, Raditladi, and Mozart basins, Mercury</title>
<author>
<name sortKey="Blair, David M" sort="Blair, David M" uniqKey="Blair D" first="David M." last="Blair">David M. Blair</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Earth, Atmospheric, and Planetary Sciences, Purdue University</s1>
<s2>West Lafayette, Indiana</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Freed, Andrew M" sort="Freed, Andrew M" uniqKey="Freed A" first="Andrew M." last="Freed">Andrew M. Freed</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Earth, Atmospheric, and Planetary Sciences, Purdue University</s1>
<s2>West Lafayette, Indiana</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Byrne, Paul K" sort="Byrne, Paul K" uniqKey="Byrne P" first="Paul K." last="Byrne">Paul K. Byrne</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Terrestrial Magnetism, Carnegie Institution of Washington, NW</s1>
<s2>Washington, DC</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Klimczak, Christian" sort="Klimczak, Christian" uniqKey="Klimczak C" first="Christian" last="Klimczak">Christian Klimczak</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Terrestrial Magnetism, Carnegie Institution of Washington, NW</s1>
<s2>Washington, DC</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Prockter, Louise M" sort="Prockter, Louise M" uniqKey="Prockter L" first="Louise M." last="Prockter">Louise M. Prockter</name>
<affiliation>
<inist:fA14 i1="03">
<s1>The Johns Hopkins University Applied Physics Laboratory</s1>
<s2>Laurel, Maryland</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ernst, Carolyn M" sort="Ernst, Carolyn M" uniqKey="Ernst C" first="Carolyn M." last="Ernst">Carolyn M. Ernst</name>
<affiliation>
<inist:fA14 i1="03">
<s1>The Johns Hopkins University Applied Physics Laboratory</s1>
<s2>Laurel, Maryland</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Solomon, Sean C" sort="Solomon, Sean C" uniqKey="Solomon S" first="Sean C." last="Solomon">Sean C. Solomon</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Terrestrial Magnetism, Carnegie Institution of Washington, NW</s1>
<s2>Washington, DC</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Lamont-Doherty Earth Observatory, Columbia University</s1>
<s2>Palisades, New York</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Melosh, H Jay" sort="Melosh, H Jay" uniqKey="Melosh H" first="H. Jay" last="Melosh">H. Jay Melosh</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Earth, Atmospheric, and Planetary Sciences, Purdue University</s1>
<s2>West Lafayette, Indiana</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zuber, Maria T" sort="Zuber, Maria T" uniqKey="Zuber M" first="Maria T." last="Zuber">Maria T. Zuber</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0353144</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0353144 INIST</idno>
<idno type="RBID">Pascal:13-0353144</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000016</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">The origin of graben and ridges in Rachmaninoff, Raditladi, and Mozart basins, Mercury</title>
<author>
<name sortKey="Blair, David M" sort="Blair, David M" uniqKey="Blair D" first="David M." last="Blair">David M. Blair</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Earth, Atmospheric, and Planetary Sciences, Purdue University</s1>
<s2>West Lafayette, Indiana</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Freed, Andrew M" sort="Freed, Andrew M" uniqKey="Freed A" first="Andrew M." last="Freed">Andrew M. Freed</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Earth, Atmospheric, and Planetary Sciences, Purdue University</s1>
<s2>West Lafayette, Indiana</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Byrne, Paul K" sort="Byrne, Paul K" uniqKey="Byrne P" first="Paul K." last="Byrne">Paul K. Byrne</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Terrestrial Magnetism, Carnegie Institution of Washington, NW</s1>
<s2>Washington, DC</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Klimczak, Christian" sort="Klimczak, Christian" uniqKey="Klimczak C" first="Christian" last="Klimczak">Christian Klimczak</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Terrestrial Magnetism, Carnegie Institution of Washington, NW</s1>
<s2>Washington, DC</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Prockter, Louise M" sort="Prockter, Louise M" uniqKey="Prockter L" first="Louise M." last="Prockter">Louise M. Prockter</name>
<affiliation>
<inist:fA14 i1="03">
<s1>The Johns Hopkins University Applied Physics Laboratory</s1>
<s2>Laurel, Maryland</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ernst, Carolyn M" sort="Ernst, Carolyn M" uniqKey="Ernst C" first="Carolyn M." last="Ernst">Carolyn M. Ernst</name>
<affiliation>
<inist:fA14 i1="03">
<s1>The Johns Hopkins University Applied Physics Laboratory</s1>
<s2>Laurel, Maryland</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Solomon, Sean C" sort="Solomon, Sean C" uniqKey="Solomon S" first="Sean C." last="Solomon">Sean C. Solomon</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Terrestrial Magnetism, Carnegie Institution of Washington, NW</s1>
<s2>Washington, DC</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Lamont-Doherty Earth Observatory, Columbia University</s1>
<s2>Palisades, New York</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Melosh, H Jay" sort="Melosh, H Jay" uniqKey="Melosh H" first="H. Jay" last="Melosh">H. Jay Melosh</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Earth, Atmospheric, and Planetary Sciences, Purdue University</s1>
<s2>West Lafayette, Indiana</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zuber, Maria T" sort="Zuber, Maria T" uniqKey="Zuber M" first="Maria T." last="Zuber">Maria T. Zuber</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research. Planets</title>
<idno type="ISSN">2169-9097</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research. Planets</title>
<idno type="ISSN">2169-9097</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>contraction</term>
<term>cooling</term>
<term>craters</term>
<term>emplacement</term>
<term>finite element analysis</term>
<term>flow</term>
<term>global</term>
<term>grabens</term>
<term>landforms</term>
<term>lava</term>
<term>materials</term>
<term>mercury</term>
<term>models</term>
<term>orientation</term>
<term>plains</term>
<term>subsidence</term>
<term>subsidence basins</term>
<term>tectonics</term>
<term>thickness</term>
<term>uplifts</term>
<term>viscosity</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Graben</term>
<term>Mercure</term>
<term>Tectonique</term>
<term>Forme relief</term>
<term>Orientation</term>
<term>Méthode élément fini</term>
<term>Modèle</term>
<term>Contraction</term>
<term>Plaine</term>
<term>Surrection</term>
<term>Bassin subsidence</term>
<term>Subsidence</term>
<term>Monde</term>
<term>Ecoulement</term>
<term>Matériau</term>
<term>Mise en place</term>
<term>Refroidissement</term>
<term>Lave</term>
<term>Viscosité</term>
<term>Epaisseur</term>
<term>Cratère</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Rachmaninoff, Raditladi, and Mozart peak-ring impact basins on Mercury display a distinctive pattern of tectonic features consisting of a central zone that is either devoid of tectonic landforms or contains small ridges, a medial annulus of prominent and predominantly circumferentially oriented graben, and a distal zone displaying graben that occur in a mix of orientations and that are less evident toward the peak ring. Here we use finite element models to explore three candidate scenarios for the formation of these tectonic features: (1) thermal contraction of the interior smooth plains, (2) isostatic uplift of the basin floor, and (3) subsidence following volcanic loading. Our results suggest that only thermal contraction can account for the observed pattern of graben, whereas some combination of subsidence and global contraction is the most likely explanation for the central ridges in Rachmaninoff and Mozart. Thermal contraction models, however, predict the formation of graben in the centermost region of each basin, where no graben are observed. We hypothesize that graben in this region were buried by a thin, late-stage flow of plains material, and images of partially filled graben provide evidence of such late-stage plains emplacement. These results suggest that the smooth plains units in these three basins are volcanic in origin. The thermal contraction models also imply a cooling unit ∼1 km thick near the basin center, further supporting the view that plains-forming lavas on Mercury were often of sufficiently high volume and low viscosity to pool to substantial thicknesses within basins and craters.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="2">
<s0>2169-9097</s0>
</fA01>
<fA05>
<s2>118</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>The origin of graben and ridges in Rachmaninoff, Raditladi, and Mozart basins, Mercury</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BLAIR (David M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>FREED (Andrew M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BYRNE (Paul K.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KLIMCZAK (Christian)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PROCKTER (Louise M.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ERNST (Carolyn M.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>SOLOMON (Sean C.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>MELOSH (H. Jay)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>ZUBER (Maria T.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Earth, Atmospheric, and Planetary Sciences, Purdue University</s1>
<s2>West Lafayette, Indiana</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Terrestrial Magnetism, Carnegie Institution of Washington, NW</s1>
<s2>Washington, DC</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>The Johns Hopkins University Applied Physics Laboratory</s1>
<s2>Laurel, Maryland</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Lamont-Doherty Earth Observatory, Columbia University</s1>
<s2>Palisades, New York</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</fA14>
<fA20>
<s1>47-58</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144E1</s2>
<s5>354000140724260050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0353144</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="2">
<s0>Journal of geophysical research. Planets</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The Rachmaninoff, Raditladi, and Mozart peak-ring impact basins on Mercury display a distinctive pattern of tectonic features consisting of a central zone that is either devoid of tectonic landforms or contains small ridges, a medial annulus of prominent and predominantly circumferentially oriented graben, and a distal zone displaying graben that occur in a mix of orientations and that are less evident toward the peak ring. Here we use finite element models to explore three candidate scenarios for the formation of these tectonic features: (1) thermal contraction of the interior smooth plains, (2) isostatic uplift of the basin floor, and (3) subsidence following volcanic loading. Our results suggest that only thermal contraction can account for the observed pattern of graben, whereas some combination of subsidence and global contraction is the most likely explanation for the central ridges in Rachmaninoff and Mozart. Thermal contraction models, however, predict the formation of graben in the centermost region of each basin, where no graben are observed. We hypothesize that graben in this region were buried by a thin, late-stage flow of plains material, and images of partially filled graben provide evidence of such late-stage plains emplacement. These results suggest that the smooth plains units in these three basins are volcanic in origin. The thermal contraction models also imply a cooling unit ∼1 km thick near the basin center, further supporting the view that plains-forming lavas on Mercury were often of sufficiently high volume and low viscosity to pool to substantial thicknesses within basins and craters.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>001E01</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>220</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Graben</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>grabens</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Graben</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Mercure</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>mercury</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Mercurio</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Tectonique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>tectonics</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Tectónico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Forme relief</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>landforms</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Orientation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>orientation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Orientación</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Méthode élément fini</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>finite element analysis</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>models</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Contraction</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>contraction</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Contracción</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Plaine</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>plains</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Llano</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Surrection</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>uplifts</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Bassin subsidence</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>subsidence basins</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Cuenca de subsidencia</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Subsidence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>subsidence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Subsidencia</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Monde</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>global</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Mundo</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Ecoulement</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>flow</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Matériau</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>materials</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Mise en place</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>emplacement</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Emplazamiento</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Refroidissement</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>cooling</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Enfriamiento</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Lave</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>lava</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="2" l="SPA">
<s0>Lava</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Viscosité</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>viscosity</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="2" l="SPA">
<s0>Viscosidad</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Epaisseur</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>thickness</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="2" l="SPA">
<s0>Espesor</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Cratère</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>craters</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="2" l="SPA">
<s0>Cráter</s0>
<s5>22</s5>
</fC03>
<fN21>
<s1>336</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 13-0353144 INIST</NO>
<ET>The origin of graben and ridges in Rachmaninoff, Raditladi, and Mozart basins, Mercury</ET>
<AU>BLAIR (David M.); FREED (Andrew M.); BYRNE (Paul K.); KLIMCZAK (Christian); PROCKTER (Louise M.); ERNST (Carolyn M.); SOLOMON (Sean C.); MELOSH (H. Jay); ZUBER (Maria T.)</AU>
<AF>Department of Earth, Atmospheric, and Planetary Sciences, Purdue University/West Lafayette, Indiana/Etats-Unis (1 aut., 2 aut., 8 aut.); Department of Terrestrial Magnetism, Carnegie Institution of Washington, NW/Washington, DC/Etats-Unis (3 aut., 4 aut., 7 aut.); The Johns Hopkins University Applied Physics Laboratory/Laurel, Maryland/Etats-Unis (5 aut., 6 aut.); Lamont-Doherty Earth Observatory, Columbia University/Palisades, New York/Etats-Unis (7 aut.); Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology/Cambridge, Massachusetts/Etats-Unis (9 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research. Planets; ISSN 2169-9097; Etats-Unis; Da. 2013; Vol. 118; No. 1; Pp. 47-58; Bibl. 1 p.1/4</SO>
<LA>Anglais</LA>
<EA>The Rachmaninoff, Raditladi, and Mozart peak-ring impact basins on Mercury display a distinctive pattern of tectonic features consisting of a central zone that is either devoid of tectonic landforms or contains small ridges, a medial annulus of prominent and predominantly circumferentially oriented graben, and a distal zone displaying graben that occur in a mix of orientations and that are less evident toward the peak ring. Here we use finite element models to explore three candidate scenarios for the formation of these tectonic features: (1) thermal contraction of the interior smooth plains, (2) isostatic uplift of the basin floor, and (3) subsidence following volcanic loading. Our results suggest that only thermal contraction can account for the observed pattern of graben, whereas some combination of subsidence and global contraction is the most likely explanation for the central ridges in Rachmaninoff and Mozart. Thermal contraction models, however, predict the formation of graben in the centermost region of each basin, where no graben are observed. We hypothesize that graben in this region were buried by a thin, late-stage flow of plains material, and images of partially filled graben provide evidence of such late-stage plains emplacement. These results suggest that the smooth plains units in these three basins are volcanic in origin. The thermal contraction models also imply a cooling unit ∼1 km thick near the basin center, further supporting the view that plains-forming lavas on Mercury were often of sufficiently high volume and low viscosity to pool to substantial thicknesses within basins and craters.</EA>
<CC>001E01; 220</CC>
<FD>Graben; Mercure; Tectonique; Forme relief; Orientation; Méthode élément fini; Modèle; Contraction; Plaine; Surrection; Bassin subsidence; Subsidence; Monde; Ecoulement; Matériau; Mise en place; Refroidissement; Lave; Viscosité; Epaisseur; Cratère</FD>
<ED>grabens; mercury; tectonics; landforms; orientation; finite element analysis; models; contraction; plains; uplifts; subsidence basins; subsidence; global; flow; materials; emplacement; cooling; lava; viscosity; thickness; craters</ED>
<SD>Graben; Mercurio; Tectónico; Orientación; Modelo; Contracción; Llano; Cuenca de subsidencia; Subsidencia; Mundo; Emplazamiento; Enfriamiento; Lava; Viscosidad; Espesor; Cráter</SD>
<LO>INIST-3144E1.354000140724260050</LO>
<ID>13-0353144</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000016 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000016 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:13-0353144
   |texte=   The origin of graben and ridges in Rachmaninoff, Raditladi, and Mozart basins, Mercury
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023